Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Sociotechnical Audits: Broadening the Algorithm Auditing Lens to Investigate Targeted Advertising | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

Sociotechnical Audits: Broadening the Algorithm Auditing Lens to Investigate Targeted Advertising

Date
October 04, 2023
Topics
Design, Human-Computer Interaction
Your browser does not support the video tag.
Read Paper
abstract

Algorithm audits are powerful tools for studying black-box systems without direct knowledge of their inner workings. While very effective in examining technical components, the method stops short of a sociotechnical frame, which would also consider users themselves as an integral and dynamic part of the system. Addressing this limitation, we propose the concept of sociotechnical auditing: auditing methods that evaluate algorithmic systems at the sociotechnical level, focusing on the interplay between algorithms and users as each impacts the other. Just as algorithm audits probe an algorithm with varied inputs and observe outputs, a sociotechnical audit (STA) additionally probes users, exposing them to different algorithmic behavior and measuring their resulting attitudes and behaviors. As an example of this method, we develop Intervenr, a platform for conducting browser-based, longitudinal sociotechnical audits with consenting, compensated participants. Intervenr investigates the algorithmic content users encounter online, and also coordinates systematic client-side interventions to understand how users change in response. As a case study, we deploy Intervenr in a two-week sociotechnical audit of online advertising (N = 244) to investigate the central premise that personalized ad targeting is more effective on users. In the first week, we observe and collect all browser ads delivered to users, and in the second, we deploy an ablation-style intervention that disrupts normal targeting by randomly pairing participants and swapping all their ads. We collect user-oriented metrics (self-reported ad interest and feeling of representation) and advertiser-oriented metrics (ad views, clicks, and recognition) throughout, along with a total of over 500,000 ads. Our STA finds that targeted ads indeed perform better with users, but also that users begin to acclimate to different ads in only a week, casting doubt on the primacy of personalized ad targeting given the impact of repeated exposure. In comparison with other evaluation methods that only study technical components, or only experiment on users, sociotechnical audits evaluate sociotechnical systems through the interplay of their technical and human components.

Share
Link copied to clipboard!
Authors
  • Michelle Lam
    Michelle Lam
  • Ayush Pandit
  • Colin H. Kalicki
  • Rachit Gupta
  • Poonam Sahoo
  • Danaë Metaxa
Related
  • Closed
    Seed Research Grants
    Call for proposals will open in Summer 2025

    Designed to support new, ambitious, and speculative ideas with the objective of getting initial results

Related Publications

Stories for the Future 2024
Isabelle Levent
Deep DiveMar 31, 2025
Research

We invited 11 sci-fi filmmakers and AI researchers to Stanford for Stories for the Future, a day-and-a-half experiment in fostering new narratives about AI. Researchers shared perspectives on AI and filmmakers reflected on the challenges of writing AI narratives. Together researcher-writer pairs transformed a research paper into a written scene. The challenge? Each scene had to include an AI manifestation, but could not be about the personhood of AI or AI as a threat. Read the results of this project.

Research

Stories for the Future 2024

Isabelle Levent
Machine LearningGenerative AIArts, HumanitiesCommunications, MediaDesign, Human-Computer InteractionSciences (Social, Health, Biological, Physical)Deep DiveMar 31

We invited 11 sci-fi filmmakers and AI researchers to Stanford for Stories for the Future, a day-and-a-half experiment in fostering new narratives about AI. Researchers shared perspectives on AI and filmmakers reflected on the challenges of writing AI narratives. Together researcher-writer pairs transformed a research paper into a written scene. The challenge? Each scene had to include an AI manifestation, but could not be about the personhood of AI or AI as a threat. Read the results of this project.

How Culture Shapes What People Want From AI
Chunchen Xu, Xiao Ge, Daigo Misaki, Hazel Markus, Jeanne Tsai
May 11, 2024
Research
Your browser does not support the video tag.

There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.

Research
Your browser does not support the video tag.

How Culture Shapes What People Want From AI

Chunchen Xu, Xiao Ge, Daigo Misaki, Hazel Markus, Jeanne Tsai
Design, Human-Computer InteractionSciences (Social, Health, Biological, Physical)May 11

There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health
Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Feb 14, 2025
Research
Your browser does not support the video tag.

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Research
Your browser does not support the video tag.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health

Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Foundation ModelsGenerative AIMachine LearningNatural Language ProcessingSciences (Social, Health, Biological, Physical)HealthcareFeb 14

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.